IV. CORE COURSE -C 9:

(Credits: Theory-04, Practicals

Marks: 15 (MSE: 1Hr) + 60 (ESE: 3Hrs) + 25 (Pr 3Hrs) = 100

Pass Marks: Th (MSE +ESE) = 30 + Pr ESE = 10

Instruction to Question Setter for

Mid Semester Examination (MSE):

There will be **two** group of questions. **Group A** is **compulsory** and will contain five questions of **very short answer type** consisting of I mark each. **Group B** will **contain descriptive type** three questions of two marks each, out of which any two are to answer.

End Semester Examination (ESE):

There will be two group of questions. Group A is compulsory and will contain two questions. Question No.1 will be very short answer type consisting of ten questions of 1 mark each. Question No.2 will be short answer type of 5 marks. Group B will contain descriptive type five questions of fifteen marks each, out of which any three are to answer.

Note: There may be subdivisions in each question asked in Theory Examinations.

PLANT ECOLOGY AND PHYTOGEOGRAPHY

Unit 1: Introduction

Basic concepts; Levels of organization. Inter-relationships between the living world and the environment, the components and dynamism, homeostasis.

(4 lectures)

Theory: 60 Lectures

Unit 2: Soil

Importance; Origin; Formation; Composition; Physical; Chemical and Biological components; Soil profile; Role of climate in soil development.

(8 lectures)

Unit 3: Water

Importance: States of water in the environment; Atmospheric moisture; Precipitation types (rain, fog, snow, hail, dew); Hydrological Cycle; Water in soil; Water table.

(4 lectures)

Unit 4: Light, temperature, wind and fire

Variations; adaptations of plants to their variation.

(6 lectures)

Unit 5: Biotic interactions

Trophic organization, basic source of energy, autotrophy, heterotrophy; symbiosis, commensalism, parasitism; food chains and webs; ecological pyramids; biomass, standing crop.

(2 lectures)

Unit 6: Population ecology

Characteristics and Dynamics . Ecological Speciation

(4 lectures)

Unit 7: Plant communities

Concept of ecological amplitude; Habitat and niche; Characters: analytical and synthetic; Ecotone and edge effect; Dynamics: succession – processes, types; climax concepts.

(8 lectures)

Unit 8: Ecosystems

Structure; Processes; Trophic organisation; Food chains and Food webs; Ecological pyramids.

(4 lectures)

Unit 9: Functional aspects of ecosystem

Principles and models of energy flow; Production and productivity; Ecological efficiencies; Biogeochemical cycles; Cycling of Carbon, Nitrogen and Phosphorus.

(8 lectures)

Unit 10: Phytogeography

Principles; Continental drift; Theory of tolerance; Endemism; Brief description of major terrestrial biomes (one each from tropical, temperate & tundra); Phytogeographical division ofIndia; Local Vegetation.

(12 lectures)

BOTANY PRACTICAL-C 9 LAB

60 Lectures

- 1. Study of instruments used to measure microclimatic variables: Soil thermometer, maximum and minimum thermometer, anemometer, psychrometer/hygrometer, rain gauge and lux meter.
- 2. Determination of pH of various soil and water samples (pH meter, universal indicator/Lovibond comparator and pH paper)
- 3. Analysis for carbonates, chlorides, nitrates, sulphates, organic matter and base deficiency from two soil samples by rapid field tests.
- 4. Determination of organic matter of different soil samples by Walkley & Black rapid titration method.
- 5. Comparison of bulk density, porosity and rate of infiltration of water in soils of three habitats.
- 6. Determination of dissolved oxygen of water samples from polluted and unpolluted sources.
- 7. (a). Study of morphological adaptations of hydrophytes and xerophytes (four each).
 - (b). Study of biotic interactions of the following: Stem parasite (*Cuscuta*), Root parasite (*Orobanche*) Epiphytes, Predation (Insectivorous plants).
- 8. Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus, by species area curve method (species to be listed).
- 9. Quantitative analysis of herbaceous vegetation in the college campus for frequency and comparison with Raunkiaer's frequency distribution law.
- 10. Quantitative analysis of herbaceous vegetation for density and abundance in the college campus.
- 11. Field visit to familiarise students with ecology of different sites.

Reference Books

Odum, E.P. (2005). Fundamentals of ecology. Cengage Learning India Pvt. Ltd., New Delhi. 5th edition.
Singh, J.S., Singh, S.P., Gupta, S. (2006). Ecology Environment and Resource Conservation. Anamaya Publications, New Delhi, India.
Sharma, P.D. (2010). Ecology and Environment. Rastogi Publications, Meerut, India. 8th edition.
Wilkinson, D.M. (2007). Fundamental Processes in Ecology: An Earth Systems Approach. Oxford University Press. U.S.A.
Kormondy, E.J. (1996). Concepts of ecology. PHI Learning Pvt. Ltd., Delhi, India. 4th edition.